Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.448
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568976

RESUMO

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Assuntos
Receptores Colinérgicos , Sinapses , Sinapses/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia , Neurônios Motores/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo , Colinérgicos , Receptores Pré-Sinápticos
2.
Biochem Pharmacol ; 223: 116183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580167

RESUMO

In this study, we have investigated the pharmacological activity and structural interaction of two novel psychoplastogens, tabernanthalog (TBG) and ibogainalog (IBG) at heterologously-expressed rat (r) and human (h) nicotinic acetylcholine receptors (nAChRs), the rα1ß2γ2L γ-aminobutyric acid type A receptor (GABAAR), and the human voltage-gated N-type calcium channel (CaV2.2 channel). Both compounds inhibited the nAChRs with the following receptor selectivity: α9α10 > α7 > α3ß2 â‰… α3ß4, indicating that ß2/ß4 subunits are relatively less important for their activity. The potencies of TBG and IBG were comparable at hα7 and hα9α10 subtypes, and comparable to their rat counterparts. TBG- and IBG-induced inhibition of rα7 was ACh concentration-independent and voltage-dependent, whereas rα9α10 inhibition was ACh concentration-dependent and voltage-independent, suggesting that they interact with the α7 ion channel pore and α9α10 orthosteric ligand binding site, respectively. These results were supported by molecular docking studies showing that at the α7 model TBG forms stable interactions with luminal rings at 9', 13', and 16', whereas IBG mostly interacts with the extracellular-transmembrane junction. In the α9α10 model, however, these compounds interacted with several residues from the principal (+) and complementary (-) sides in the transmitter binding site. Ibogaminalog (DM506) also interacted with a non-luminal site at α7, and one α9α10 orthosteric site. TBG and IBG inhibited the GABAAR and CaV2.2 channels with 10 to 30-fold lower potencies. In sum, we show that TBG and IBG inhibit the α7 and α9α10 nAChRs by noncompetitive and competitive mechanisms, respectively, and with higher potency than the GABAAR and CaV2.2 channel.


Assuntos
Receptores Nicotínicos , Ratos , Animais , Humanos , Receptores Nicotínicos/metabolismo , Receptores de GABA-A/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Simulação de Acoplamento Molecular , Ácido gama-Aminobutírico
3.
PLoS One ; 19(4): e0298065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626211

RESUMO

Anoxia in the mammalian brain leads to hyper-excitability and cell death; however, this cascade of events does not occur in the anoxia-tolerant brain of the western painted turtle, Chrysemys picta belli. The painted turtle has become an important anoxia-tolerant model to study brain, heart, and liver function in the absence of oxygen, but being anoxia-tolerant likely means that decapitation alone is not a suitable method of euthanasia. Many anesthetics have long-term effects on ion channels and are not appropriate for same day experimentation. Using whole-cell electrophysiological techniques, we examine the effects of the anesthetic, Alfaxalone, on pyramidal cell action potential amplitude, threshold, rise and decay time, width, frequency, whole cell conductance, and evoked GABAA receptors currents to determine if any of these characteristics are altered with the use of Alfaxalone for animal sedation. We find that Alfaxalone has no long-term impact on action potential parameters or whole-cell conductance. When acutely applied to naïve tissue, Alfaxalone did lengthen GABAA receptor current decay rates by 1.5-fold. Following whole-animal sedation with Alfaxalone, evoked whole cell GABAA receptor current decay rates displayed an increasing trend with 1 and 2 hours after brain sheet preparation, but showed no significant change after a 3-hour washout period. Therefore, we conclude that Alfaxalone is a suitable anesthetic for same day use in electrophysiological studies in western painted turtle brain tissue.


Assuntos
Anestésicos , Hipóxia Encefálica , Pregnanodionas , Tartarugas , Animais , Tartarugas/fisiologia , Receptores de GABA-A/metabolismo , Células Piramidais/metabolismo , Hipóxia/metabolismo , Anestésicos/farmacologia , Mamíferos
4.
Pestic Biochem Physiol ; 199: 105776, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458683

RESUMO

γ-Aminobutyric acid receptors (GABARs) are crucial targets for pest control chemicals, including meta-diamide and isoxazoline insecticides, which act as negative allosteric modulators of insect GABARs. Previous cell-based assays have indicated that amino acid residues in the transmembrane cavity between adjacent subunits of Drosophila RDL GABAR (i.e., Ile276, Leu280, and Gly335) are involved in mediating the action of meta-diamides. In this study, to confirm this result at the organismal level, we employed CRISPR/Cas9-mediated genome editing, generated six transgenic Drosophila strains carrying substitutions in these amino acid residues, and investigated their sensitivity to broflanilide and isocycloseram. Flies homozygous for the I276F mutation did not exhibit any change in sensitivity to the tested insecticides compared to the control flies. Conversely, I276C homozygosity was lethal, and heterozygous flies exhibited ∼2-fold lower sensitivity to broflanilide than the control flies. Flies homozygous for the L280C mutation survived into adulthood but exhibited infertility. Both heterozygous and homozygous L280C flies exhibited ∼3- and âˆ¼20-fold lower sensitivities to broflanilide and isocycloseram, respectively, than the control flies. The reduction in sensitivity to isocycloseram in L280C flies diminished to ∼3-fold when treated with piperonyl butoxide. Flies homozygous for the G335A mutation reached the adult stage. However, they were sterile, had small bodies, and exhibited reduced locomotion, indicating the critical role of Gly335 in RDL function. These flies exhibited markedly increased tolerance to topically applied broflanilide and isocycloseram, demonstrating that the conserved Gly335 is the target of the insecticidal actions of broflanilide and isocycloseram. Considering the significant fitness costs, the Gly335 mutation may not pose a serious risk for the development of resistance in field populations of insect pests. However, more careful studies using insect pests are needed to investigate whether our perspective applies to resistance development under field conditions.


Assuntos
Benzamidas , Proteínas de Drosophila , Fluorocarbonos , Inseticidas , Animais , Receptores de GABA/genética , Receptores de GABA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Inseticidas/farmacologia , Inseticidas/química , Glicina/farmacologia , Mutagênese , Resistência a Inseticidas/genética , Receptores de GABA-A/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
5.
Commun Biol ; 7(1): 345, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509283

RESUMO

The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.


Assuntos
Hormônio Liberador da Corticotropina , Habenula , Animais , Masculino , Camundongos , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Endocanabinoides , Habenula/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologia
6.
Int Rev Neurobiol ; 175: 75-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555121

RESUMO

The target of alcohol's effect on the central nervous system has been sought for more than 50 years in the brain's GABA system. The behavioral and emotional effects of alcohol in humans and rodents are very similar to those of barbiturates and benzodiazepines, and GABAA receptors have been shown to be one of the sites of alcohol action. The mechanisms of GABAergic inhibition have been a hotspot of research but have turned out to be complex and controversial. Genetics support the involvement of some GABAA receptor subunits in the development of alcohol dependence and in alcohol use disorders (AUD). Since the effect of alcohol on the GABAA system resembles that of a GABAergic positive modulator, it may be possible to develop GABAergic drug treatments that could substitute for alcohol. The adaptation mechanisms of the GABA system and the plasticity of the brain are a big challenge for drug development: the drugs that act on GABAA receptors developed so far also may cause adaptation and development of additional addiction. Human polymorphisms should be studied further to get insight about how they affect receptor function, expression or other factors to make reasonable predictions/hypotheses about what non-addictive interventions would help in alcohol dependence and AUD.


Assuntos
Alcoolismo , Humanos , Alcoolismo/genética , Alcoolismo/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Benzodiazepinas/farmacologia , Etanol/farmacologia , Ácido gama-Aminobutírico/metabolismo
7.
J Neuroendocrinol ; 36(4): e13378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38482748

RESUMO

Neurosteroids have been implicated in the pathophysiology of post-traumatic stress disorder (PTSD). Allopregnanolone is reduced in subsets of individuals with PTSD and has been explored as a novel treatment strategy. Both direct trauma exposure and witnessed trauma are risk factors for PTSD; however, the role of neurosteroids in the behavioral outcomes of these unique experiences has not been explored. Here, we investigate whether observational fear is associated with a reduced capacity for endogenous neurosteroidogenesis and the relationship with behavioral outcomes. We demonstrated that mice directly subjected to a threat (foot shocks) and those witnessing the threat have decreased plasma levels of allopregnanolone. The expression of a key enzyme involved in endogenous neurosteroid synthesis, 5α-reductase type 2, is decreased in the basolateral amygdala, which is a major emotional processing hub implicated in PTSD. We demonstrated that genetic knockdown or pharmacological inhibition of 5α-reductase type 2 exaggerates the behavioral expression of fear in response to witnessed trauma, whereas oral treatment with an exogenous, synthetic neuroactive steroid gamma-aminobutyric acid-A receptor positive allosteric modulator with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound]) decreased the behavioral response to observational fear. These data implicate impaired endogenous neurosteroidogenesis in the pathophysiology of threat exposure, both direct and witnessed. Further, these data suggest that treatment with exogenous 5α-reduced neurosteroids or targeting endogenous neurosteroidogenesis may be beneficial for the treatment of individuals with PTSD, whether resulting from direct or witnessed trauma.


Assuntos
Neuroesteroides , Animais , Camundongos , Pregnanolona/metabolismo , Receptores de GABA-A/metabolismo , Medo/fisiologia , Emoções , Colestenona 5 alfa-Redutase/metabolismo
8.
Sci Rep ; 14(1): 6402, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493224

RESUMO

Allopregnanolone (ALLO) is a known neurosteroid and a progesterone metabolite synthesized in the ovary, CNS, PNS, adrenals and placenta. Its role in the neuroendocrine control of ovarian physiology has been studied, but its in situ ovarian effects are still largely unknown. The aims of this work were to characterize the effects of intrabursal ALLO administration on different ovarian parameters, and the probable mechanism of action. ALLO administration increased serum progesterone concentration and ovarian 3ß-HSD2 while decreasing 20α-HSD mRNA expression. ALLO increased the number of atretic follicles and the number of positive TUNEL granulosa and theca cells, while decreasing positive PCNA immunostaining. On the other hand, there was an increase in corpora lutea diameter and PCNA immunostaining, whereas the count of TUNEL-positive luteal cells decreased. Ovarian angiogenesis and the immunohistochemical expression of GABAA receptor increased after ALLO treatment. To evaluate if the ovarian GABAA receptor was involved in these effects, we conducted a functional experiment with a specific antagonist, bicuculline. The administration of bicuculline restored the number of atretic follicles and the diameter of corpora lutea to normal values. These results show the actions of ALLO on the ovarian physiology of the female rat during the follicular phase, some of them through the GABAA receptor. Intrabursal ALLO administration alters several processes of the ovarian morpho-physiology of the female rat, related to fertility and oocyte quality.


Assuntos
Pregnanolona , Progesterona , Gravidez , Feminino , Ratos , Animais , Pregnanolona/farmacologia , Progesterona/farmacologia , Antígeno Nuclear de Célula em Proliferação , Bicuculina/farmacologia , Receptores de GABA-A , Corpo Lúteo
9.
Stem Cell Res ; 76: 103372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458029

RESUMO

Developmental and epileptic encephalopathies (DEEs) are early-onset conditions that cause intractable seizures and developmental delays. Missense variants in Gamma-aminobutyric acid type A receptor (GABAAR) subunits commonly cause DEEs. Ahring et al. (2022) showed a variant in the gene that encodes the delta subunit (GABRD) is strongly associated with the gain-of-function of extrasynaptic GABAAR. Here, we report the generation of two patient-specific human induced pluripotent stem cells (hiPSC) lines with (i) a de novo variant and (ii) a maternal variant, both for the pathogenic GABRD c.872 C>T, (p.T291I). The variants in the generated cell line were corrected using the CRISPR-Cas9 gene editing technique (respective isogenic control lines).


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Epilepsia/genética , Mutação de Sentido Incorreto , Edição de Genes
10.
J Agric Food Chem ; 72(12): 6189-6202, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501577

RESUMO

The hexapeptide YPVEPF with strong sleep-enhancing effects could be detected in rat brain after a single oral administration as we previously proved. In this study, the mechanism and molecular effects of YPVEPF in the targeted stress-induced anxiety mice were first investigated, and its key active structure was further explored. The results showed that YPVEPF could significantly prolong sleep duration and improve the anxiety indexes, including prolonging the time spent in the open arms and in the center. Meanwhile, YPVEPF showed strong sleep-enhancing effects by significantly increasing the level of the GABA/Glu ratio, 5-HT, and dopamine in brain and serum and regulating the anabolism of multiple targets, but the effects could be blocked by bicuculline and WAY100135. Moreover, the molecular simulation results showed that YPVEPF could stably bind to the vital GABAA and 5-HT1A receptors due to the vital structure of Tyr-Pro-Xaa-Xaa-Pro-, and the electrostatic and van der Waals energy played dominant roles in stabilizing the conformation. Therefore, YPVEPF displayed sleep-enhancing and anxiolytic effects by regulating the GABA-Glu metabolic pathway and serotoninergic system depending on distinctive self-folding structures with Tyr and two Pro repeats.


Assuntos
Ansiolíticos , Distúrbios do Início e da Manutenção do Sono , Ácido gama-Aminobutírico/análogos & derivados , Ratos , Camundongos , Animais , Caseínas/metabolismo , Receptores de GABA-A/metabolismo , Serotonina , Ansiolíticos/farmacologia , Ansiedade
11.
J Integr Neurosci ; 23(3): 51, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38538228

RESUMO

BACKGROUND: The flavonoid chrysin produces rapid and long-lasting anxiolytic- and antidepressant-like effects in rats. However, it is not known whether low and high doses of chrysin produce differential anti-immobility effects through the Gamma-Aminobutyric Acid sub-type A (GABAA) receptor. The goal of this work was therefore to compare low and high doses of chrysin for their effects on depression-like behavior in a longitudinal study. Moreover, chrysin was compared with the serotonergic fluoxetine and Gamma-Aminobutyric Acid (GABA)ergic allopregnanolone, and its involvement with the GABAA receptor after chronic treatment was also investigated. METHODS: Male Wistar rats were assigned to five groups (n = 8 each): vehicle, 1 mg/kg chrysin, 5 mg/kg chrysin, 1 mg/kg fluoxetine, and 1 mg/kg allopregnanolone. In the first experiment, treatments were injected daily and the effects on locomotor activity and the forced swim test were evaluated at 0, 1, 14, and 28 days of treatment, and 48 h after the final treatment. In the second experiment, similar groups were treated for 28 days with injection of 1 mg/kg picrotoxin to investigate the role of the GABAA receptor. Depending on the experimental design, one- and two-way analysis of variance (ANOVA) tests were used for statistical analysis, with p < 0.05 set as the criteria for significance. RESULTS: In both experiments, the treatments did not alter locomotor activity. However, low and high doses of chrysin, allopregnanolone, and fluoxetine gradually produced antidepressant-like effects in the forced swim test, and maintained this effect for 48 h post-treatment, except with low dose chrysin. Picrotoxin blocked the antidepressant-like effects produced by low dose chrysin, but did not affect those produced by high dose chrysin, allopregnanolone, or fluoxetine. CONCLUSIONS: The differential antidepressant-like effects caused by low and high doses of chrysin are time-dependent. Low dose chrysin produces a rapid antidepressant-like effect, whereas high dose chrysin produces a delayed but sustained the effect, even 48 h after withdrawal. The effect with high dose chrysin was similar to that observed with allopregnanolone and fluoxetine. The mechanism for the antidepressant-like effect of low chrysin appears to be GABAergic, whereas the effect of high dose chrysin may involve other neurotransmission and neuromodulation systems related to the serotonergic system.


Assuntos
Fluoxetina , Receptores de GABA-A , Ratos , Masculino , Animais , Fluoxetina/farmacologia , Pregnanolona , Ratos Wistar , Receptores de GABA , Picrotoxina , Estudos Longitudinais , Antidepressivos/farmacologia , Flavonoides/farmacologia , Ácido gama-Aminobutírico
12.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518225

RESUMO

Focal seizures are a type of epileptic event that has plagued the medical community for a long time, and the existing drug treatment is mainly based on the modulation of ${GABA}_a$-receptors to affect GABAergic signaling to achieve the therapeutic purpose. The majority of research currently focuses on the impact of ${GABA}_a$-receptors on neuronal firing, failing to analyze the molecular and ionic mechanisms involved. Specifically, the research on deeper-level mechanisms on how ${GABA}_a$-receptors affect neuronal firing by altering ion activity has not been addressed. This research aimed to study the effects of different ${GABA}_a$-receptor structures on ion activity in focal seizures model by adjusting parameters of the ${GABA}_a$-receptors: the rise time constant (${tau}_1$) and decay time constant (${tau}_2$). The research indicates that as the values of ${tau}_1$ and ${tau}_2$ of the ${GABA}_a$-receptor change, the ion concentration will vary based on the change of the ${GABA}_a$-receptor potential. To a certain extent, the duration of epileptic activity will also be affected to a certain extent. In conclusion, the alteration of ${GABA}_a$-receptor structure will affect the inhibitory effect of interneurons on pyramidal neurons, and different parameters of the ${GABA}_a$-receptor will directly impact the therapeutic effect.


Assuntos
Epilepsia , Alta do Paciente , Humanos , Neurônios/fisiologia , Convulsões , Receptores de GABA-A/fisiologia , Ácido gama-Aminobutírico/farmacologia
13.
Synapse ; 78(2): e22289, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436644

RESUMO

Epileptic seizures are seen as a result of changing excitability balance depending on the deterioration in synaptic plasticity in the brain. Neuroplastin, and its related molecules which are known to play a role in synaptic plasticity, neurotransmitter activities that provide balance of excitability and, different neurological diseases, have not been studied before in epilepsy. In this study, a total of 34 Sprague-Dawley male and female rats, 2 months old, weighing 250-300 g were used. The epilepsy model in rats was made via pentylenetetrazole (PTZ). After the completion of the experimental procedure, the brain tissue of the rats were taken and the histopathological changes in the hippocampus and cortex parts and the brain stem were investigated, as well as the immunoreactivity of the proteins related to the immunohistochemical methods. As a result of the histopathological evaluation, it was determined that neuron degeneration and the number of dilated blood vessels in the hippocampus, frontal cortex, and brain stem were higher in the PTZ status epilepticus (SE) groups than in the control groups. It was observed that neuroplastin and related proteins TNF receptor-associated factor 6 (TRAF6), Gamma amino butyric acid type A receptors [(GABA(A)], and plasma membrane Ca2+ ATPase (PMCA) protein immunoreactivity levels increased especially in the male hippocampus, and only AMPA receptor subunit type 1 (GluA1) immunoreactivity decreased, unlike other proteins. We believe this may be caused by a problem in the mechanisms regulating the interaction of neuroplastin and GluA1 and may cause problems in synaptic plasticity in the experimental epilepsy model. It may be useful to elucidate this mechanism and target GluA1 when determining treatment strategies.


Assuntos
Epilepsia , Animais , Feminino , Masculino , Ratos , Tronco Encefálico/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/genética , Hipocampo/metabolismo , Pentilenotetrazol , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Fator 6 Associado a Receptor de TNF/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Receptores de AMPA/genética , Córtex Cerebral/metabolismo
15.
Eur J Pharmacol ; 970: 176494, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484926

RESUMO

BACKGROUND: Inhalational anesthetics target the inhibitory extrasynaptic γ-aminobutyric acid type A (GABAA) receptors. Both neuronal and glial GABA mediate tonic inhibition of the extrasynaptic GABAA receptors. However, the role of glial GABA during inhalational anesthesia remains unclear. This study aimed to evaluate whether astrocytic GABA contributes to the action of different inhalational anesthetics. METHODS: Gene knockout of monoamine oxidase B (MAOB) was used to reduce astrocytic GABA levels in mice. The hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane were assessed by evaluating the loss of righting reflex (LORR) and tail-pinch withdrawal response (LTWR) in MAOB knockout and wild-type mice. Minimum alveolar concentration (MAC) for LORR, time to LORR, MAC for LTWR and time to LTWR of isoflurane, sevoflurane, and desflurane were assessed. RESULTS: Time to LORR and time to LTWR with isoflurane were significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001 and P = 0.032, respectively). Time to LORR with 0.8 MAC of sevoflurane was significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001), but not with 1.0 MAC of sevoflurane (P=0.217). MAC for LTWR was significantly higher in MAOB knockout mice exposed to sevoflurane (P < 0.001). With desflurane, MAOB knockout mice had a significantly higher MAC for LORR (P = 0.003) and higher MAC for LTWR (P < 0.001) than wild-type mice. CONCLUSIONS: MAOB knockout mice showed reduced sensitivity to the hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane. Behavioral tests revealed that the hypnotic and immobilizing effects of inhalational anesthetics would be mediated by astrocytic GABA.


Assuntos
Anestésicos Inalatórios , Isoflurano , Éteres Metílicos , Camundongos , Animais , Isoflurano/farmacologia , Sevoflurano/farmacologia , Desflurano/farmacologia , Anestésicos Inalatórios/farmacologia , Ácido gama-Aminobutírico , Hipnóticos e Sedativos , Camundongos Knockout , Receptores de GABA-A , Éteres Metílicos/farmacologia
16.
Cell Rep ; 43(3): 113834, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38431842

RESUMO

Striatal dopamine axons co-release dopamine and gamma-aminobutyric acid (GABA), using GABA provided by uptake via GABA transporter-1 (GAT1). Functions of GABA co-release are poorly understood. We asked whether co-released GABA autoinhibits dopamine release via axonal GABA type A receptors (GABAARs), complementing established inhibition by dopamine acting at axonal D2 autoreceptors. We show that dopamine axons express α3-GABAAR subunits in mouse striatum. Enhanced dopamine release evoked by single-pulse optical stimulation in striatal slices with GABAAR antagonism confirms that an endogenous GABA tone limits dopamine release. Strikingly, an additional inhibitory component is seen when multiple pulses are used to mimic phasic axonal activity, revealing the role of GABAAR-mediated autoinhibition of dopamine release. This autoregulation is lost in conditional GAT1-knockout mice lacking GABA co-release. Given the faster kinetics of ionotropic GABAARs than G-protein-coupled D2 autoreceptors, our data reveal a mechanism whereby co-released GABA acts as a first responder to dampen phasic-to-tonic dopamine signaling.


Assuntos
Autorreceptores , Dopamina , Camundongos , Animais , Ácido gama-Aminobutírico/farmacologia , Axônios/metabolismo , Corpo Estriado/metabolismo , Receptores de GABA-A/metabolismo , Camundongos Knockout , Homeostase
17.
ACS Chem Neurosci ; 15(5): 909-915, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386612

RESUMO

Activation of the GABAA receptor is associated with numerous behavioral end points ranging from anxiolysis to deep anesthesia. The specific behavioral effect of a GABAergic compound is considered to correlate with the degree of its functional effect on the receptor. Here, we tested the hypothesis that a low-efficacy allosteric potentiator of the GABAA receptor may act, due to a ceiling effect, as a sedative with reduced and limited action. We synthesized a derivative, named (3α,5ß)-20-methyl-pregnane-3,20-diol (KK-235), of the GABAergic neurosteroid 5ß-pregnane-3α,20α-diol. Using electrophysiology, we showed that KK-235 is a low-efficacy potentiator of the synaptic-type α1ß2γ2L GABAA receptor. In the zebrafish larvae behavioral assay, KK-235 was found to only partially block the inverted photomotor response (PMR) and to weakly reduce swimming behavior, whereas the high-efficacy GABAergic steroid (3α,5α,17ß)-3-hydroxyandrostane-17-carbonitrile (ACN) fully blocked PMR and spontaneous swimming. Coapplication of KK-235 reduced the potentiating effect of ACN in an electrophysiological assay and dampened its sedative effect in behavioral experiments. We propose that low-efficacy GABAergic potentiators may be useful as sedatives with limited action.


Assuntos
Neuroesteroides , Receptores de GABA-A , Animais , Peixe-Zebra , Esteroides/farmacologia , Pregnanos
18.
Sci Rep ; 14(1): 4169, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379020

RESUMO

Gephyrin is the main scaffolding protein at inhibitory postsynaptic sites, and its clusters are the signaling hubs where several molecular pathways converge. Post-translational modifications (PTMs) of gephyrin alter GABAA receptor clustering at the synapse, but it is unclear how this affects neuronal activity at the circuit level. We assessed the contribution of gephyrin PTMs to microcircuit activity in the mouse barrel cortex by slice electrophysiology and in vivo two-photon calcium imaging of layer 2/3 (L2/3) pyramidal cells during single-whisker stimulation. Our results suggest that, depending on the type of gephyrin PTM, the neuronal activities of L2/3 pyramidal neurons can be differentially modulated, leading to changes in the size of the neuronal population responding to the single-whisker stimulation. Furthermore, we show that gephyrin PTMs have their preference for selecting synaptic GABAA receptor subunits. Our results identify an important role of gephyrin and GABAergic postsynaptic sites for cortical microcircuit function during sensory stimulation.


Assuntos
Proteínas de Membrana , Receptores de GABA-A , Vibrissas , Animais , Receptores de GABA-A/metabolismo , Vibrissas/metabolismo , Proteínas de Transporte/metabolismo , Células Piramidais/metabolismo , Sinapses/metabolismo
19.
Transl Psychiatry ; 14(1): 107, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388464

RESUMO

Epidemiological investigations indicate that parental drug abuse experiences significantly influenced the addiction vulnerability of offspring. Studies using animal models have shown that paternal cocaine use and highly motivated drug-seeking behavior are important determinants of offspring addiction susceptibility. However, the key molecules contributing to offspring addiction susceptibility are currently unclear. The motivation for cocaine-seeking behavior in offspring of male rats was compared between those whose fathers self-administered cocaine (SA) and those who were yoked with them and received non-contingent cocaine administrations (Yoke). We found that paternal experience with cocaine-seeking behavior, but not direct cocaine exposure, could lead to increased lever-pressing behavior in male F1 offspring. This effect was observed without significant changes to the dose-response relationship. The transcriptomes of ventral tegmental area (VTA) in offspring were analyzed under both naive state and after self-administration training. Specific transcriptomic changes in response to paternal cocaine-seeking experiences were found, which mainly affected biological processes such as synaptic connections and receptor signaling pathways. Through joint analysis of these candidate genes and parental drug-seeking motivation scores, we found that gamma-aminobutyric acid receptor subunit gamma-3 (Gabrg3) was in the hub position of the drug-seeking motivation-related module network and highly correlated with parental drug-seeking motivation scores. The downregulation of Gabrg3 expression, caused by paternal motivational cocaine-seeking, mainly occurred in GABAergic neurons in the VTA. Furthermore, down-regulating GABAergic Gabrg3 in VTA resulted in an increase in cocaine-seeking behavior in the Yoke F1 group. This down-regulation also reduced transcriptome differences between the Yoke and SA groups, affecting processes related to synaptic formation and neurotransmitter transmission. Taken together, we propose that paternal cocaine-seeking behavior, rather than direct drug exposure, significantly influences offspring addiction susceptibility through the downregulation of Gabrg3 in GABAergic neurons of the VTA, highlighting the importance of understanding specific molecular pathways in the intergenerational inheritance of addiction vulnerability.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Ratos , Masculino , Animais , Humanos , Área Tegmentar Ventral , Motivação , Cocaína/efeitos adversos , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Pai , Autoadministração/métodos , Comportamento de Procura de Droga/fisiologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
20.
Commun Biol ; 7(1): 225, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396202

RESUMO

Reduced inhibition by somatostatin-expressing interneurons is associated with depression. Administration of positive allosteric modulators of α5 subunit-containing GABAA receptor (α5-PAM) that selectively target this lost inhibition exhibit antidepressant and pro-cognitive effects in rodent models of chronic stress. However, the functional effects of α5-PAM on the human brain in vivo are unknown, and currently cannot be assessed experimentally. We modeled the effects of α5-PAM on tonic inhibition as measured in human neurons, and tested in silico α5-PAM effects on detailed models of human cortical microcircuits in health and depression. We found that α5-PAM effectively recovered impaired cortical processing as quantified by stimulus detection metrics, and also recovered the power spectral density profile of the microcircuit EEG signals. We performed an α5-PAM dose-response and identified simulated EEG biomarker candidates. Our results serve to de-risk and facilitate α5-PAM translation and provide biomarkers in non-invasive brain signals for monitoring target engagement and drug efficacy.


Assuntos
Depressão , Receptores de GABA-A , Humanos , Depressão/tratamento farmacológico , Receptores de GABA-A/metabolismo , Neurônios/metabolismo , Interneurônios/metabolismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...